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The Cox proportional hazards model is typically used to analyze time-to-event
data. If the event of interest is rare and covariates are difficult or expensive to
collect, the nested case-control (NCC) design provides consistent estimates at
reduced costs with minimal impact on precision if the model is specified cor-
rectly. If our scientific goal is to conduct inference regarding an association of
interest, it is essential that we specify the model a priori to avoid multiple test-
ing bias. We cannot, however, be certain that all assumptions will be satisfied so
it is important to consider robustness of the NCC design under model misspec-
ification. In this manuscript, we show that in finite sample settings where the
functional form of a covariate of interest is misspecified, the estimates result-
ing from the partial likelihood estimator under the NCC design depend on the
number of controls sampled at each event time. To account for this dependency,
we propose an estimator that recovers the results obtained using using the full
cohort, where full covariate information is available for all study participants.
We present the utility of our estimator using simulation studies and show the
theoretical properties. We end by applying our estimator to motivating data from
the Alzheimer’s Disease Neuroimaging Initiative.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease responsible for memory loss that also inhibits the ability to
perform daily tasks. AD trials require that participants undergo various tests to help detect progression of the disease. One
such examination is the Alzheimer’s Disease Assessment Scale-11 (ADAS-11) which was created to evaluate cognitive and
behavioral function,1 both of which are compromised by AD. Along with these tests, participants often have to undergo
genotype testing to check for the presence of the Apolipoprotein e4 (APOE e4) allele which is associated with higher risk
of progression to AD.2 Investigators are also often interested in collecting measures of Aβ, a biomarker of the disease. One
way to measure levels of Aβ is in cerebrospinal fluid (CSF). However, participants are often unwilling to undergo this
procedure,3 so availability of CSF samples is limited. A sampling scheme such as the nested case-control (NCC) design
would help reduce costs associated with the testing procedures by only requiring genotype testing and processing of CSF
samples for a subsample from the original sample.4

The NCC design proposed by Thomas (1977) (the focus of this manuscript) is implemented using the Cox proportional
hazards (PH) model. Under the PH model (we refer to the estimator as the partial likelihood [PL] estimator), subjects
Abbreviations: AD, Alzheimer’s disease; NCC, nested case-control; SRS, simple random sample.
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who experience an event provide more information than censored observations. The NCC design makes use of this fact
by requiring full covariate information from all subjects who experience an event (ie, progress to AD) and a subsample
from subjects who do not experience the event. At each event time, M (usually 1≤M ≤ 4) controls are randomly sampled
without replacement from everyone who is still at risk at that time. In this way, the NCC design provides great reduction
in costs when the event of interest is rare. As stated earlier, in the context of our problem only a subsample of subjects
in the original sample would need to undergo genotype testing and a large portion of CSF samples would not have to be
processed. When the proportional hazards assumption holds, the PL estimator under the NCC sampling scheme recovers
the results from the PL estimator under the full cohort (FC). Moreover, because the NCC design uses all events, it is more
efficient than taking a simple random sample of the same size (cf. Reference 5).

If the goal of a study is to conduct inference for the association between a pre-specified predictor of inter-
est and a given outcome, it is crucial to specify the statistical model used for inference a priori to avoid multiple
testing bias.6–9 It is difficult, however, to ensure that all assumptions hold for a priori specified models. Because
of this, it is important to consider properties of statistical models when the underlying assumptions used in the
theoretical development of the model do not hold. In previous work, it has been shown that when the propor-
tionality assumption does not hold under the NCC design and a binary predictor is of interest, the expectation of
the sampling distribution of the usual NCC estimator will depend on M, the number of controls sampled at each
event time.10 Misspecification of the functional form of continuous covariates in the NCC design has not been
investigated.

If the PH assumption holds under a correctly specified PH model, misspecification of the functional form of a covari-
ate in the model will induce non-proportional hazards. Therefore, based upon the results provided in the work of Nuño
and Gillen,10 it is natural to hypothesize that if the functional form of a covariate is misspecified in the usual NCC
design then the expectation of the sampling distribution of the usual NCC estimator will depend on the parameters of
the design (ie, the number of controls sampled at each event time). It is important to note, however, that this depen-
dence arises differently than that explored in the work of Nuño and Gillen10 which considered the time-varying effect
of a discrete covariate as opposed to an induced dependence on the sampling design parameters via a misspecified
model.

In the context of our motivating AD research, if our hypothesis is true it would imply that one would have
to a priori specify the functional form of baseline ADAS-11 in order to avoid dependence of the estimand on the
sampling design. Failure to do so could reasonably lead to lack of scientific reproducibility and replicability. The func-
tional form of a continuous covariate is not obvious, however, and since interests lies in conducting inference rather
than data-driven modeling we might decide to fit a first-order linear trend to relate ADAS-11 to the log-hazard for
time to dementia progression. As we will see later in the manuscript, the observed relationship is indeed not lin-
ear in nature. If interest lies in the association, changing the a priori specified model in a post-hoc fashion to fit
the observed data will inflate the Type I error rate. It is therefore necessary to understand precisely how model mis-
specification impacts the resulting estimator in this case and to correct, if possible, any deleterious impacts of the
misspecification.

In this manuscript, we begin with a brief introduction of the NCC design. We then show the dependence of the esti-
mand on the sampling proportion (which in finite samples leads to a dependence on M). In Section 2.3, we present the
asymptotic distribution of the proposed estimator and provide finite-sample estimators for the variance. We include sim-
ulation studies for the proposed estimator and end with an application of the proposed estimator to data stemming from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study11 to investigate the association between the ADAS-11 and
time to progression of AD.

2 METHODOLOGY

2.1 Partial likelihood estimator under the usual NCC design

Let Ti, Ci, and Zi denote the true event time, censoring time, and covariate for subject i, respectively. The observed time is
Xi = min(Ti,Ci) and 𝛿i is an indicator for whether subject i experiences an event. Under the NCC design, M subjects are
randomly sampled from everyone who is still at risk at each event time. In this setting, the estimating equation takes the

form UNCC(𝛽) =
∑n

i=1 ∫ ∞
t=0

{
Zi −

S(1)
NCC(𝛽,t)

S(0)
NCC(𝛽,t)

}
dNi(t) = 0 where Ni(t) = I(Xi ≤ t, 𝛿i = 1), S(r)

NCC(𝛽, t) = n−1 ∑n
j=1 Zr

j Ỹ j(t) exp(Zj𝛽)
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and Ỹ j(t) is an indicator for whether subject j is in the NCC risk set at time t (ie, the subject either experienced an event
at time t or was sampled as a control). For all times during which there are at least M + 1 subjects at risk, we have that∑n

j=1 Ỹ j(t) = M + 1.
In previous work focusing on a binary predictor of interest it has been shown10 that if the NCC sampling scheme is

utilized and the proportionality assumption is not satisfied, the PL estimator is consistent for the solution to

∫
∞

0
EZ

{
EZ∗|Z

(
fT(t|Z)Sc(t|Z)𝛾(a,Z∗, t) ×

[
Z −

EZ{ZST(t|Z)SC(t|Z) exp(Z𝛽)}
EZ{ST(t|Z)SC(t|Z) exp(Z𝛽)}

])}
dt = 0, (1)

where f T(t|Z) and ST(t|Z) denote the density and survival function for the failure times, respectively, and SC(t|Z) denotes
the survival function for the censoring times. Moreover, 𝛾(a,Z∗, t) = a⋅ST (t|Z∗)SC(t|Z∗)

ST (t)SC(t)
represents the probability of sampling

a control with covariate value Z* if an event is observed at time t with limM,n→∞M∕n = a. As described in our previous
work, as M, n→∞, Equation (1) simplifies to

∫
∞

0
EZ

{
afT(t|Z)SC(t|Z) × [

Z −
EZ{ZST(t|Z)SC(t|Z) exp(Z𝛽)}
EZ{ST(t|Z)SC(t|Z) exp(Z𝛽)}

]}
dt = 0,

which results in the same estimand as that of the FC PL estimator. In finite samples, however, the estimates obtained
using the NCC design will depend on M, the number of controls sampled at each event time. Under the NCC design, we
alter the risks sets compared to those of the FC and, as a result, we also change the observed censoring distribution. As
seen in Equation (1), the censoring distribution determines the weight given to each event time and therefore influences
the estimates. Note that the censoring distribution (and in turn the weighting scheme) will differ for different values
of M. When the PH assumption is satisfied, the weighting scheme will not impact the estimates because the relative
hazards do not vary with time. When the functional form of a predictor is misspecified, however, we no longer satisfy the
proportionality assumptions and the weights given to each event time will effect the estimates.

2.2 Recovering the FC estimand for a single continuous variable with misspecified
functional form

As described in the previous section, when the PH model is misspecified the expectation of the sampling distribution of the
usual NCC estimator will depend on the number of controls sampled at each event time. This result is due to the changing
censoring distribution, and hence, potentially changing covariate distributions of subjects included in the risk sets of the
NCC design relative to the FC analysis. In order to mimic the risk-set representation of the FC, we propose imputing the
values of subjects in the FC risk sets who were not included in the NCC sample. Because controls are randomly sampled
at each event time, we can use information from previous risk sets to learn about subjects who are still at risk in the FC.
Under the NCC design, we have full covariate information for subjects sampled into the NCC sample. We also know the
at-risk status for all subjects in the FC at each event time. We can therefore use this information to impute the covariate
values for subjects in the FC who were not sampled. Using the new risk sets with the imputed values, we can obtain
estimates of the coefficients.

Proposition 1. Let R̃(t) be the risk set including the imputed values at time t and assume that the values of covariates in R̃(t),
Z̃j, are sampled from the same distribution as those in R(t), the FC risk set at time t. Denote 𝛽 to be the estimand corresponding
to the FC PL estimator and let 𝛽 be the solution to

U(𝛽) =
n∑

i=1
∫

∞

0

{
Zi −

n−1∑
j∈R̃(t)Z̃j exp(𝛽Z̃j)

n−1∑
j∈R̃(t) exp(𝛽Z̃j)

}
dNi(t) = 0. (2)

Then 𝛽
P
→ 𝛽.

The proof of Proposition 1 can be found in the Appendix. Note that subjects in R̃(tj) are the same as those in R(tj). We
used different notation for both to emphasize that our proposed method relies on imputation of the unknown covariates
for subjects not in the NCC sample. As stated earlier, for the result to hold we need the imputed values to be drawn from
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the same distribution as those in the FC risk set at time t. While the covariate values can be imputed in several ways, one
way to do so is via Algorithm 1. In this setting we estimate 𝜇(t), the mean covariate value, for subjects in the risk set at
each event time and calculate the mean squared error, 𝜎2

MSE(t). To obtain �̂�(t), we start by calculating the sample mean
for the first event times (five in our example). The number selected here can differ and depends on the number of event
times required to fit the natural spline. When fitting the natural spline, we include subjects sampled for previous event
times only for the time at which they were sampled. Once we obtain �̂�(t), we impute covariate values for subjects not
in the NCC risk set (but who are still at risk in the FC) by randomly drawing values for the predictor of interest from a
N(�̂�(t), 𝜎2

MSE(t)) distribution where �̂�(t) represents the estimated mean covariate value at time t.

Algorithm 1. Imputation approach for the univariate setting

1: D: number of events
2: tj, j = 1, · · · ,D: ordered event times
3: Rj: risk set at time tj under the FC
4: R̃j: risk set at time tj including the imputed values
5: M: number of controls sampled at each event time
6: s0: is the intercept
7: s(t): a natural spline with evenly spaced knots
8: 𝜇(t): the mean covariate value at time t
9: zkc: predictor of interest for subject k sampled at time tc

10: procedure Imputation of the Predictor of Interest
11: for j in 1 ∶ D do
12: if j ≤ 5 (Note: 5 was selected to allow enough time points to fit the natural spline). then
13: Calculate �̂�(tj) = z̄ = 1∑j

c=1
∑n

k=1 Ỹk(tc)

∑j
c=1

∑n
k=1 zkcỸ (tc)

14: else
15: Fit �̂�(t) = s0 + s(t) using subjects sampled for all tk ≤ tj to obtain �̂�(tj)
16: 𝜎2

MSE(tj) = 1∑j
k=1 |R̃I (tk)|

∑j
k=1

∑|R̃(tk)|
i=1 (�̂�(tk) − zik)2

17: Sample |R(tk)| −∑n
i=1 Ỹi(tj) values from N(�̂�(tj), 𝜎2

MSE(tj)). These values, together with the original NCC
controls, make up R̃(tj).

18: end if
19: end for
20: Fit a Cox proportional hazards model using the imputed values.
21: end procedure

If the sample size is small, we can increase the number of controls sampled at the first event time to obtain better
estimates of the mean covariate value at each time while not grossly impacting the overall efficiency of the NCC design.
Moreover, all controls from previous risk sets can be used to estimate the means at each event time as long as those
controls are still at risk.

Previous work also relies on imputation of subjects not sampled into the NCC risk sets.10 However, in the
binary case, the imputed value can only take on two values so estimating the number of subjects in each group is
sufficient. When a continuous covariate is of interest, we must account for the variability in the covariate values
(as is proposed in Algorithm 1) so that the imputed values are representative of the FC risk set.

2.3 Asymptotic properties and estimation of the variance

In this section, we provide the asymptotic properties of the proposed estimator and introduce a finite-sample variance
estimator.

Proposition 2. Let 𝛽 denote the solution to Equation (2). Suppose that P(Yi(𝜏) > 0) > 0 and let 𝛽 denote the estimand
corresponding to the FC PL estimator. If values in R̃(tj) are drawn from the same conditional distribution as those in R(tj),

then
√

n(𝛽 − 𝛽)
D
→ N(0,A−1BA−1) where A = limn→∞ An, B = limn→∞ Bn, with An(𝛽) = n−1 ∑n

i=1 𝛿i𝜌(Xi) (1 − 𝜌(Xi)), 𝛿i is an
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indicator for whether subject i experienced an event, Xi is the observed time for subject i, 𝜌(Xi) =
n−1 ∑n

j=1 Ỹ j(Xi)Zj exp(Zj𝛽)

n−1 ∑n
j=1 Ỹ j(Xi) exp(Zj𝛽)

and

Ỹ j(Xi) is an indicator for whether subject j was originally sampled to be in the NCC risk set at time Xi. Further, Bn(𝛽) =∑D
j=1 Ũ∗

j (𝛽)Ũ
∗
j (𝛽)

T, where t1, t2, … , tD are the unique event times and

Ũ∗
j (𝛽) = n−1

n∑
i=1

[
𝛿i

{
Zi −

∑
k∈R̃(tj)

Z̃k exp(𝛽Z̃k)∑
k∈R̃(tj)

exp(𝛽Z̃k)

}
−

Zi exp(𝛽Zi)∑
k∈R̃(tj)

Z̃k exp(𝛽Z̃k)
+ exp(𝛽Zi)

∑
k∈R̃(tj)

Z̃k exp(𝛽Z̃k)

{
∑

k∈R̃(tj)
exp(𝛽Z̃k)}2

]
. (3)

The proof of Proposition 2 can be found in the Appendix. Based on the asymptotic properties of our estimator, we
find that the finite-sample variance can be estimated using V̂ar(𝛽) = n−1A−1

n (𝛽)Bn(𝛽)A−1
n (𝛽). Notice that An is the variance

under the usual NCC design when the model is correctly specified. Bn represents the true variance and accounts for
imputation of the risk sets through a Taylor expansion.

2.4 Incorporating adjustment covariates

So far we have introduced an estimator that recovers the FC results in the univariate setting. In observational studies,
however, we often adjust for potential confounding variables to isolate the association of interest. As before, the impu-
tation approach can be selected by the user, but in this manuscript we use a hot-deck multiple imputation approach.12

Imputation of the risk sets can be accomplished as in Algorithm 2.

Algorithm 2. Imputation approach for the multivariate setting

1: D: number of events
2: tj, j = 1, · · · ,D: ordered event times
3: Rj: risk set at time tj under the FC
4: R̃j: risk set at time tj including the imputed values and the originally sampled NCC controls
5: Rj: the risk set at time tj under the NCC design
6: M: number of controls sampled at each event time
7: s(t): a natural spline with evenly spaced knots
8: 𝜇(t): the mean covariate value at time t
9: zik1: predictor of interest for subject i sampled in the NCC sample at time tk

10: z̃ik1: imputed value for the predictor of interest for subject i at time tk
11: p: the number of covariates in the model
12: l: the number of previous risk sets to consider for hot-deck imputations
13: procedure Imputation of Confounding Variables (Done after Algorithm 1)
14: for j in 1:D do
15: for m in 1:length(R̃(tj)) do
16: if Ỹm(tj) ≠ 1 then Find min |z̃mj1 − zhj1| for h ∈ ∪j

k=(j−l)R(tk).
17: Let z∗1 be zhj1 for h ∈ ∪j

k=(j−l)R(tk) with the smallest absolute difference.
18: Impute values of z̃mj2, · · · , z̃mjp using z∗2 , · · · , z∗p
19: end if
20: end for
21: end for
22: Fit a Cox PH model with the imputed subjects.
23: end procedure

The estimating function in this setting takes the form UHD(𝛽) =
∑n

i=1 ∫ ∞
t=0

{
Z⃗i −

S̃(1)
HD(𝛽,t)

S̃(0)
HD(𝛽,t)

}
dNi(t) where

S̃(r)
HD = n−1∑

j∈R̃(tj)
Z⃗

r
j exp(Z⃗j𝛽) and Z⃗j is the vector of covariates. R̃(tj) represents the covariate values for the imputed

risk sets which include the originally sampled subjects and the imputed subjects. For subjects who were not originally
sampled into the NCC sample, we draw values for the predictor of interest from a N(�̂�(t), 𝜎2

MSE(t)) as in the univariate
setting. We match each of the imputed values to the subject from the l previous risk sets in the NCC sample with the
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closest value to the imputed value (l is selected by the user). The values of the adjustment variables of the selected subject
are used to impute the values for the imputed subject. If more than one NCC subject can be used to impute the covariate
values, we randomly sample one subject from eligible subjects. As stated earlier, l can be selected by the user. If event
times are far apart, we recommend selecting a small l because neighboring event times may have drastically different
risk sets. If event times are close, a larger l may be selected. In fact, if event times are close, l can be selected to include
all previous risk sets. When sampling subjects to impute covariate values, however, one must ensure that the subjects
selected are still at risk during the current event time.

Some covariate information, such as demographic information, may be easily available for all study participants. If
this is the case, we may use this information (instead of estimating the mean covariate values) along with the hot-deck
imputation method to impute covariate values that may be difficult or expensive to collect.

3 EMPIRICAL PERFORMANCE

3.1 Univariate results

We begin by presenting simulation results for the univariate setting. Table 1 illustrates the performance of the usual
NCC PL estimator and our proposed estimator when the functional form is misspecified. Values for the predictor of
interest were sampled from a N(𝜇 = 1.5, 𝜎 = 0.5) distribution. The true hazard function takes the form
𝜆(t) = exp(log(0.1) + log(1.25)z + log(0.5)z2), failure times were drawn from Exp(rate = 𝜆(t)), and censoring times were
drawn from a Unif(0, 6) distribution. Observed event times were taken to be the minimum of the event and censor-
ing times. Generating data in this way led to approximately 90% censoring and we included 2000 subjects in each of
the 200 simulations. We considered NCC samples with one to four controls per event time. We did not consider more
than four controls since in practice people often use up to four controls.13 Moreover, it has been shown that using
more than four controls does not provide a large benefit in terms of efficiency and power.14 For each NCC sample, we
sampled 60 controls at the first event time regardless of M. The additional sampling of controls was only performed
at the first event time to supplement the risk set and was done for the usual NCC PL estimator and for the proposed
estimator. While we selected 60 controls here, in practice the number of additional controls to be sampled at the first
event should depend on variability of the predictor of interest, desired precision for the imputation estimate, and
feasibility of data collection for the additional controls. Specifically, we recommend that one can select the number of
additional controls to be used at the first event time by considering the desired precision of the estimated mean of the
predictor of interest and weighing this against the relative increase of the sample size for the NCC design relative to that
of the FC.

To illustrate the performance of the estimators under a misspecified functional form, we fit a model of the
form 𝜆(t) = 𝜆0(t) exp(𝛽z). The analytic variance estimates for the usual NCC PL estimator were obtained using
the robust variance estimator while those of the proposed estimator were obtained using the estimator presented
in Section 2.3.

Table 1 shows that the NCC PL estimator performs poorly when the model is not specified correctly and that the
results obtained depend on the value of M, the number of controls sampled at each event time. The proposed estimator,
however, reduces the bias relative to the FC estimator from approximately 18% to less than 1% when M = 1 and from
approximately 9% to 1% when M = 4. We compared the model fit (to the FC data) using Akaike’s Information Criterion
(AIC)15 with the FC data and coefficient estimates from the standard NCC design and the proposed estimator. For brevity,
we do not provide the numeric results, but the average AIC based on 200 simulations was lower for the proposed estimator
compared to the standard NCC design for all M, indicating better fit. The robust variance estimator for the NCC PL
estimator tends to under estimate the variance for smaller values of M. Our proposed sandwich estimator is conservative
when M = 1 but performs well for M = 2 to 4. To assess the robustness of the proposed estimator, we also investigated the
performance when the functional form is specified correctly. In this setting, data were generated as in the first scenario,
but now the true hazard function takes the form 𝜆(t) = exp(log(0.008) + log(2.5)z) and the failure times were drawn from
Exp(rate = 𝜆(t)). These data also had approximately 90% censoring. As seen on the right side of Table 1, when the model
is specified correctly the NCC PL estimator estimates the same quantity as the FC estimator. Our proposed estimator
also performs well regardless of M, yielding a bias (relative to the FC estimator) between 1% and 2% for all values of
M. In this case, the AICs were nearly identical for the proposed and standard NCC estimators. The proposed variance
estimator again gives conservative estimates of the variance when M = 1, but performs well for M = 2 to 4. When the
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T A B L E 1 200 simulations under a misspecified functional form (left) and a correctly specified functional form (right)

Misspecified model Correctly specified model

Coeff. % Emp. An. Coeff. % Emp. An.

N Est. Est. Bias Var. Var. N Est. Est. Bias Var. Var.

FC 2000.00 −1.4064 0.00 0.0167 0.0182 2000.00 0.9311 0.00 0.0239 0.0215

NCC

M = 1 403.49 −1.6614 18.13 0.0808 0.0574 411.25 0.9272 −0.42 0.0595 0.0318

M = 2 544.65 −1.5686 11.53 0.0521 0.0371 553.62 0.9194 −1.26 0.0418 0.0254

M = 3 668.32 −1.5388 9.42 0.0324 0.0298 679.66 0.9237 −0.80 0.0332 0.0236

M = 4 778.99 −1.5308 8.85 0.0376 0.0271 791.18 0.9278 −0.35 0.0346 0.0228

Proposed estimator

M = 1 403.49 −1.4136 0.52 0.0776 0.1728 411.25 0.9156 −1.67 0.0675 0.1300

M = 2 544.65 −1.4065 0.01 0.0505 0.0773 553.62 0.9147 −1.76 0.0524 0.0627

M = 3 668.32 −1.4075 0.08 0.0422 0.0529 679.66 0.9185 −1.36 0.0426 0.0472

M = 4 778.99 −1.4219 1.10 0.0417 0.0437 791.18 0.9167 −1.55 0.0391 0.0395

Note: The NCC samples included 60 controls at the first event time, regardless of M. Empirical variance and analytic variance estimates are
also provided.

functional form is specified correctly, we observe a small loss in efficiency. However, this loss is nearly negligible and we
have the added benefit that if the functional form is not specified correctly we still estimate the same quantity as that of
the FC.

3.2 Multivariate results

When using data from observational studies, it is almost always necessary to adjust for confounding variables. In
Section 2.4, we described a hot-deck imputation approach to impute the values for the missing covariates. In this section,
we present simulation results when adjusting for a confounding variable. As before, we consider two scenarios- one in
which the functional form of the predictor of interest is misspecified and one in which the functional form is correctly
specified. In this setting, we assume that no covariate information is available for subjects not sampled into the NCC
sample.

Table 2 presents the results for the multivariate setting with a misspecified functional form. The predictor of inter-
est and the confounding variable are distributed as Z1 ∼ N(𝜇 = 1.5, 𝜎 = 0.5) and Z2 ∼ N(𝜇 = 0 + 2 ⋅ I(x1 ≥ 1.6), 𝜎 = 1.5),
respectively. The true hazard function for this scenario takes the form 𝜆(t) = exp(log(0.075) + log(1.25)z1 + log(0.5)z2

1 +
log(1.35)z2) and failure times were drawn from Exp(rate = 𝜆(t)). As before, censoring times were drawn from Unif(0, 6)
and the observed times were the minimum of the observed and censoring times, yielding approximately 90% cen-
soring. We sampled 60 controls at the first event time regardless of M and the model is assumed to take the form
𝜆(t) = 𝜆0(t) exp(𝛽1z1 + 𝛽2z2). We find that when the model is misspecified, the usual NCC PL estimator produces biased
coefficient estimates (when compared to the FC estimates) and the estimates obtained depend on the number of controls
sampled at each event time. The proposed estimator, however, yields results similar to those of the FC PL estima-
tor. When M = 1, the bias relative to the FC estimator is approximately 14% under the usual NCC PL estimator. This
is reduced to approximately 4% when the proposed estimator is used. In this setting, the proposed variance estima-
tor gives conservative estimates of the variance, but performance of the variance estimator improves as M increases.
While the estimates provided by our variance estimator can be conservative, it should be noted that those provided
by the robust variance estimator for the NCC PL estimator tend to give anti-conservative estimates of the variance.
The bottom portion of Table 2 presents the results for the usual NCC PL estimator and our proposed estimator when
the model is correctly specified. Data were generated as in the previous scenario, but the true hazard function takes
the form 𝜆(t) = exp(log(0.0125) + log(2.5)z1 + log(0.5)z2), with failure times being drawn from Exp(rate = 𝜆(t)). In this
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T A B L E 2 200 simulations for hot-deck imputations under misspecification of the functional form (top) and a correctly specified
functional form (bottom)

N 𝜷1 % Est. Bias Emp. Var. ̂Var(𝜷1) 𝜷2 % Est. Bias Emp. Var. ̂Var(𝜷2)

Misspecified functional form

Full Cohort 2000.00 −1.4446 0.00 0.0226 0.0215 0.2753 0.00 0.0024 0.0022

NCC

M = 1 383.68 −1.6510 14.29 0.0926 0.0685 0.2941 6.83 0.0067 0.0041

M = 2 517.73 −1.6080 11.31 0.0671 0.0442 0.2883 4.72 0.0046 0.0031

M = 3 635.58 −1.5923 10.22 0.0540 0.0372 0.2896 5.19 0.0037 0.0028

M = 4 742.26 −1.5658 8.39 0.0478 0.0331 0.2900 5.34 0.0034 0.0026

Proposed estimator

M = 1 383.68 −1.4964 3.59 0.1241 0.2869 0.2912 5.78 0.0086 0.0186

M = 2 517.73 −1.5055 4.22 0.0795 0.1188 0.2918 5.99 0.0063 0.0085

M = 3 635.58 −1.4596 1.04 0.0481 0.0768 0.2811 2.11 0.0045 0.0058

M = 4 742.26 −1.4707 1.81 0.0492 0.0617 0.2846 3.38 0.0042 0.0048

Correctly specified functional form

Full Cohort 2000.00 0.9152 0.00 0.0076 0.0068 −0.6847 0.00 0.0074 0.0066

NCC

M = 1 408.57 0.9366 2.34 0.0241 0.0175 −0.7046 2.91 0.0208 0.0145

M = 2 550.38 0.9234 0.90 0.0165 0.0117 −0.6876 0.42 0.0154 0.0101

M = 3 675.37 0.9219 0.73 0.0130 0.0099 −0.6908 0.89 0.0130 0.0089

M = 4 786.52 0.9189 0.40 0.0124 0.0089 −0.6907 0.88 0.0115 0.0081

Proposed Estimator

M = 1 408.57 0.9349 2.15 0.0301 0.0974 −0.7354 7.40 0.0360 0.0882

M = 2 550.38 0.9122 −0.33 0.0247 0.0389 −0.7007 2.34 0.0224 0.0339

M = 3 675.37 0.9081 −0.78 0.0159 0.0251 −0.6949 1.49 0.0164 0.0225

M = 4 786.52 0.9093 −0.64 0.0188 0.0201 −0.6869 0.32 0.0158 0.0178

Notes: The NCC samples included 60 controls at the first event time, regardless of M. Empirical and analytic variance estimates are also provided.

setting, the fitted model takes the same form as the true data-generating mechanism. The usual NCC PL estimator and
the proposed estimator perform similarly, both having a small bias relative to the FC estimator regardless of the selected
M. In this setting, the proposed variance estimator is again conservative when M = 1, but its performance improves
as M increases.

4 APPLICATION TO ADNI EXAMPLE

In this section, we apply the proposed estimator to data from the ADNI11 to investigate the association between the
ADAS-11 at baseline and time to progression to AD. The ADAS-11 is a cognitive test used to evaluate cognition and
behavioral function, both of which are affected by AD.1 We had 974 participants in our analysis. These participants had
ADAS-11 and CSF Aβ at baseline and did not have a diagnosis of AD dementia at baseline. In our analysis, progression
was defined as a stable clinical diagnosis of dementia or a diagnosis of dementia at the last visit. Based on this definition,
approximately 15% of subjects experienced an event. Baseline characteristics of our sample can be found in Table 3. The
mean age in the sample was 72.9 years, approximately 45% of participants were female, and approximately 42% of subjects
had at least one APOE e4 allele.
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T A B L E 3 Baseline demographics for subjects in our study Characteristic mean (sd) or n(%)

N 974

Progressors (to AD dementia) 152 (15.6%)

Age 72.9 (7.0)

Female 442 (45.4%)

White 909 (93.3%)

≥1 APOE e4 allele 405 (41.6%)

ADAS-11 8.5 (4.6)

Mini-Mental State Examination 28.2 (1.7)

Education 16.2 (2.7)

A𝛽 182.1 (53.7)

F I G U R E 1 Martingale residuals plotted against
baseline ADAS-11. The solid line represents a smoother
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As stated before, the goal of this analysis is to investigate the association between ADAS-11 at baseline and time to
progression to AD. In this case, one may a priori specify a model that assumes a linear relationship between ADAS-11
and time to progression. Using the Martingale residuals16, we found that the functional form of ADAS-11 at baseline is
not linear (Figure 1). Because the goal of the study was to investigate an association, changing the a priori selected model
to fit the observed data could increase the Type I error rate and therefore is not recommended. Instead, we fit a first-order
trend to investigate the behavior of the NCC design and the proposed estimator in this setting.

We fit the Cox proportional hazards model to the entire sample to obtain the FC estimates. We then obtained 200 NCC
samples for each value of M and applied the PL estimator and the proposed estimator as if we only had full covariate
information for subjects in the NCC sample. We a priori decided to sample 60 controls at the first event time for all
NCC samples, regardless of M. This number of additional controls provided enough statistical information so that a 95%
confidence interval for the mean ADAS-11 based upon data at the first event time had a total width of approximately 2
points, yet resulted in a minimal relative increase in total sample size. While this decision was made a priori, followup
sensitivity analyses showed that the proposed estimator performed well for this application even when considering only
10 controls at the first event time. All models were adjusted for age, education, race, the presence of at least one APOE
e4 allele, gender, and baseline CSF Aβ levels. Because APOE e4 status and CSF Aβ levels would be the most difficult
covariates to collect, we applied the NCC sampling scheme as if these measurements were only available for subjects in
the NCC sample. Demographic information, on the other hand, is easily collected for all study participants. Therefore, we
assume that demographic information is available for all study participants, even if they were not sampled into the NCC
sample. We used the hot-deck imputation method to impute values of APOE e4 and Aβ for participants not sampled into
the NCC sample. Mahalanobis distance17 was used to match subjects with missing values to sampled controls. When the
covariance matrix was singular, we used Euclidean distance. Table 4 presents the coefficient estimates for a difference of
five points in baseline ADAS-11, our predictor of interest, as well as for APOE e4 and CSF Aβ. Under the FC PL estimator,



308 NUÑO and GILLEN

T A B L E 4 Mean coefficient estimates for ADAS-11, APOE e4, and Aβ based on 200 nested case-control samples from the FC data

ADAS 11 APOE e4 A𝛃

N (HR) 5 points % Est. Bias Var. Est. (HR) % Est. Bias Var. (HR) 50 pg/ml % Est. Bias Var.

Full Cohort 974.00 0.651 (1.92) 0 0.008 0.099 (1.10) 0.00 0.046 −0.537 (0.58) 0.00 0.010

Usual NCC

M = 1 310.03 0.748 (2.11) 14.75 0.016 0.248 (1.28) 150.71 0.046 −0.583 (0.56) 8.57 0.020

M = 2 393.55 0.770 (2.16) 18.22 0.013 0.249 (1.28) 151.72 0.044 −0.572 (0.56) 6.52 0.010

M = 3 462.10 0.764 (2.15) 17.32 0.012 0.240 (1.27) 142.73 0.043 −0.570 (0.57) 6.15 0.010

M = 4 518.22 0.747 (2.11) 14.69 0.011 0.201 (1.22) 102.93 0.042 −0.562 (0.57) 4.66 0.010

M = 5 564.60 0.724 (2.06) 11.16 0.010 0.182 (1.20) 83.54 0.042 −0.560 (0.57) 4.28 0.010

Proposed Est.

M = 1 310.03 0.677 (1.97) 3.99 0.064 0.159 (1.17) 61.01 0.201 −0.583 (0.56) 8.57 0.070

M = 2 393.55 0.668 (1.95) 2.61 0.032 0.103 (1.11) 3.74 0.118 −0.592 (0.55) 10.24 0.030

M = 3 462.10 0.660 (1.94) 1.37 0.023 0.119 (1.13) 19.90 0.091 −0.580 (0.56) 8.01 0.030

M = 4 518.22 0.657 (1.93) 0.92 0.019 0.092 (1.10) −7.58 0.079 −0.575 (0.56) 7.08 0.020

M = 5 564.60 0.656 (1.93) 0.75 0.016 0.072 (1.07) −26.97 0.073 −0.583 (0.56) 8.57 0.020

Notes: 60 controls were sampled at the first event time, regardless of M.

we estimate that comparing two subpopulations that differ by five points in baseline ADAS-11, the risk of progression
to AD is approximately 92% higher for the group with higher ADAS-11. When we estimate the coefficients using the PL
estimator and the NCC sampling scheme, we find that as in the simulated examples, the estimates are different than those
obtained using the FC PL estimator and that these differ by the value of M. The bias relative to the FC estimator in this
case ranges from 11% to 18% compared to the FC PL estimates. Applying our proposed estimator reduces this to between
0.75% and 4% while using the same sample sizes as the usual NCC design. Notice also that, as expected, the variance
estimates for the proposed estimator are larger than those for the usual NCC PL estimator and that both are larger than
those of the FC PL estimator.

To calculate the usual NCC PL estimator and the proposed estimator, we would only have to collect full covariate
information for subjects in the NCC samples. That is, we would only have to perform genotype testing and process CSF
samples for subjects who progressed to AD or those who were sampled as controls. This reduces costs associated with
these tests and allows us to use CSF samples to answer other questions that we may have about AD.

5 DISCUSSION

It has been shown that the expectation of the sampling distribution of the usual NCC estimator will depend on the number
of controls sampled at each event time when the PH assumption is violated. Previous work has proposed an estimator that
yields the same results as those obtained using the FC data when the predictor of interest is binary.10 In this scenario, the
functional form of the covariate of interest is specified correctly, but the effect of the covariate is assumed to be constant
when in reality it varies with time. In our current work, we consider the performance of the PL estimator under the
NCC design when the effect of the covariate is constant over time, but the functional form is misspecified. We again
observe that the estimates obtained using the PL estimator under the NCC design also depend on the number of controls
sampled at each event time. We therefore propose a method that estimates the same quantity as the FC PL estimator under
misspecification of the functional form, while only using the information from the usual NCC design. By only requiring
full covariate information from the NCC sample, our proposed estimator maintains the reduction in costs afforded by the
NCC design. The proposed estimator recovers the FC estimates when the model is misspecified, both in the univariate
and multivariate scenarios. When the model is specified correctly, the proposed estimator still recovers the FC estimates
regardless of M. While the proposed estimator increases the bias relative to the FC estimator for M = 1 in the multivariate
setting, it should be noted that M is usually larger than one in practice. Our proposed finite-sample variance estimator
performs well for M greater than one but yields conservative estimates when M = 1.
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The purpose of this manuscript was to show the dependence on M in the standard NCC design (as proposed by Thomas
(1977)4), when the model is mis-specified. While we present one fix, it should be noted that the Samuelsen estimator18

might also be considered as an alternative approach via weighting. Moreover, it is known that the estimand corresponding
to the FC PL estimator depends on the censoring distribution when the model is misspecified.19-21 In our previous work,
we introduced an estimator for the FC censoring distribution that only requires the NCC sample. The estimator for the
censoring distribution can also be used to reweight the estimating function to yield a censoring-robust estimator in this
setting.10

The NCC design provides great reduction in costs when the event of interest is rare. When the model is specified
correctly, the NCC design estimates the same quantity as the FC PL estimator. If the functional form is misspecified,
however, the results obtained from the usual NCC estimator depend on the number of controls sampled at each event
time. The proposed estimator uses the same information as the usual NCC design but recovers the FC results even when
the functional form is misspecified. We therefore recommend application of the proposed estimator since the estimator
performs well even when the functional form is specified correctly and still affords the cost reductions offered by the NCC
sampling scheme. When using our estimator, however, we do recommend using M larger than one (which is commonly
done in practice).
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APPENDIX

Proof. Let Ti, Ci, and Xi = min (Ti,Ci) be the event, censoring, and observed times for subject i, respectively.
Ni(t) = I(Xi ≤ t, 𝛿i = 1) is a right-continuous counting process. Define S(r)(𝛽, t) = n−1 ∑n

i=1 Zr
i exp(𝛽Zi)Yi(t) (r = 0, 1, 2)

where Y i(t)= I(Xi ≥ t). Let s(r)(𝛽, t) = limn→∞S(r)(𝛽, t) and S̃(r)(𝛽, t) = n−1 ∑n
i=1 Z̃r

i exp(𝛽Z̃i)Yi(t) where Z̃i = Zi if subject
i was originally sampled into the NCC sample and the imputed value otherwise. For subjects not in the original
NCC sample, Z̃i ∼ N(�̂�(t), 𝜎2

MSE(t)) where �̂�(t) is an estimate of E[ZY (t)]. We prove the asymptotic properties of the
proposed estimator using theorem 5.3 of Kalbfleish and Prentice (2011)22 which implies Rebodello’s theorem. This
requires that there exists an open neighborhood % of 𝛽 and s(r)(𝛽, t), r = 0, 1, 2 defined on B × [0, 𝜏] that satisfy the fol-
lowing: (1) sup𝛽∈%,t∈[0,𝜏] ||S̃(r)(𝛽, t) − s(r)(𝛽, t)|| P

→ 0; (2) s(0)(𝛽, t) is bounded away from 0 for t ∈ [0, 𝜏]; (3) For r = 0, 1, 2,
s(r)(𝛽, t) is a continuous function of 𝛽 uniformly in t ∈ [0, 𝜏], s(1)(𝛽, t) = 𝜕s(0)(𝛽,t)

𝜕𝛽
and s(2)(𝛽, t) = 𝜕2s(0)(𝛽,t)

𝜕𝛽2 ; (4) Σ(𝛽, t) =
∫ 𝜏

0 𝜈(𝛽,u)s(0)(𝛽,u)𝜆0(u)du is positive definite ∀𝛽 ∈ %; (5) Zi is bounded ∀t ∈ [0, 𝜏]; (6) 𝜆0(u)du < ∞. As in Eriksson et. al
(2019)23 our results require that the imputed values are drawn from the same conditional distribution as the covariates
for subjects in the full cohort and that missing values are missing at random. The latter is satisfied by design.

We assume that P(Yi(𝜏) > 0) > 0 (ie, there is positive probability that subject i is at risk over the inferential support
interval) which implies that conditions (2) and (6) hold. We also assume that conditions (4) and (5) hold. Condition
(5) along with the dominated convergence theorem ensures that (3) is also satisfied. For condition (1) to hold, we need
sup𝛽∈%,t∈[0,𝜏] ||S̃(r)(𝛽, t) − s(r)(𝛽, t)|| P

→ 0. We have that s(r)(𝛽, t) = E[S(r)(𝛽, t)] and that ||S(r)(𝛽, t) − s(r)(𝛽, t)|| P
→ 0 by the

strong law of large numbers. Now, suppose that Z ∼ f Z and Z̃ ∼ fZ. This gives us that s(r)(𝛽, t) = E[S̃(r)(𝛽, t)] and that
sup𝛽∈%,t∈[0,𝜏] ||S̃(r)(𝛽, t) − s(r)(𝛽, t)|| P

→ 0 by the strong law of large numbers. This argument is similar to that used in the
work of Lu and Tsiatis (2001).24

Equation (2) is a sum over stochastic integrals of a predictable process with respect to a martingale and the pre-
dictability of the NCC sampling scheme holds by the same argument used in Goldstein and Langholz (1992).25 Notice
that at each event time, the proposed estimator only considers controls that were sampled into risk sets up to the cur-
rent time so the proposed estimator maintains predictability. Therefore, theorem 5.3 of Kalbfleisch and Prentice (2011)22

with the sandwich variance estimator of Lin and Wei (1989)26 and a Taylor expansion of the estimating function about
s(0)(𝛽, t), s(1)(𝛽, t) and limn→∞n−1 ∑n

i=1 Ni(t) implies that
√

n(𝛽 − 𝛽)
D
→ N(0,A−1BA−1). A = limn→∞ An and B = limn→∞ Bn

where An(𝛽) = n−1 ∑n
i=1 𝛿i𝜌(Xi) (1 − 𝜌(Xi)) and Bn(𝛽) =

∑D
j=1 Ũ∗

j (𝛽)Ũ
∗
j (𝛽)

T . 𝛿i is an indicator for whether subject i experi-

enced an event and 𝜌(Xi) =
n−1 ∑n

j=1 Ỹ j(Xi)Zj exp(Zj𝛽)

n−1 ∑n
j=1 Ỹ j(Xi) exp(Zj𝛽)

where Ỹ j(Xi) is an indicator for whether subject j was originally sampled

http://dx.doi.org/10.1093/biomet/73.2.363
http://dx.doi.org/10.1093/biomet/73.2.363
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to be in the NCC risk set at time Xi. Ũ∗
j (𝛽) is defined as in Equation (3). The proof of consistency follows from the work

of Andersen and Gill (1982).27 Using the fact that sup𝛽∈%,t∈[0,𝜏] ||S̃(r)(𝛽, t) − s(r)(𝛽, t)|| P
→ 0 and under the assumption that

Z̃i and Zi are drawn from the same distribution, it is easy to show that the log PL of the proposed estimator converges in
probability to a concave function maximized at 𝛽. ▪


